Extensions 1→N→G→Q→1 with N=C22×S3 and Q=D9

Direct product G=N×Q with N=C22×S3 and Q=D9
dρLabelID
C22×S3×D972C2^2xS3xD9432,544

Semidirect products G=N:Q with N=C22×S3 and Q=D9
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊D9 = S3×C3.S4φ: D9/C3S3 ⊆ Out C22×S33612+(C2^2xS3):D9432,522
(C22×S3)⋊2D9 = C2×D6⋊D9φ: D9/C9C2 ⊆ Out C22×S3144(C2^2xS3):2D9432,311
(C22×S3)⋊3D9 = C2×C9⋊D12φ: D9/C9C2 ⊆ Out C22×S372(C2^2xS3):3D9432,312
(C22×S3)⋊4D9 = S3×C9⋊D4φ: D9/C9C2 ⊆ Out C22×S3724(C2^2xS3):4D9432,313

Non-split extensions G=N.Q with N=C22×S3 and Q=D9
extensionφ:Q→Out NdρLabelID
(C22×S3).D9 = D6⋊Dic9φ: D9/C9C2 ⊆ Out C22×S3144(C2^2xS3).D9432,93
(C22×S3).2D9 = C2×S3×Dic9φ: trivial image144(C2^2xS3).2D9432,308

׿
×
𝔽